Initial-boundary value problems in a rectangle for two-dimensional Zakharov–Kuznetsov equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Initial-value Problems with Two-point Boundary-value Problems: Bbm-equation

The focus of the present study is the BBM equation which models unidirectional propagation of small amplitude, long waves in dispersive media. This evolution equation has been used in both laboratory and field studies of water waves. The principal new result is an exact theory of convergence of the two-point boundary-value problem to the initial-value problem posed on an infinite stretch of the...

متن کامل

Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems

One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...

متن کامل

Initial-Boundary Value Problems for the Korteweg-de Vries Equation

Exact and approximate solutions of the initial-boundary value problem for the Korteweg-de Vries equation on the semi-infinite line are found. These solutions are found for both constant and time-dependent boundary values. The form of the solution is found to depend markedly on the specific boundary and initial value. In particular, multiple solutions and nonsteady solutions are possible. The an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2018

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2018.03.048